
I " I

AFIT/GEO/ENG/91D-04 -

AD-A243 780

AN INVESTIGATION OF THE APPLICATION OF
ARTIFICIAL NEURAL NETWORKS TO

ADAPTIVE OPTICS IMAGING SYSTEMS

THESIS

Andrew H. Suzuki
Captain, USAF

AFIT/GEO/ENG/91D-04

Approved for public release; distribution unlimited

91-19017
'"' " 91 ~~1 ..- ,.i7



- REPORT DOCUMENTATION PAGE Form A!rprovrld

1. AG7NCXY USE ONLY (I vvo bhmn J . PORI OLTId 14:U~( IYPI AN) DCAr f t,5rOVPPLD

Dcember 1991 Master's Thsis.
T. ~rr ANi SUrITITI. IJNDING NUMBEP'

An Investigation into the Application of Artificial Neural
Networks toAdaptiveOpticalImagingSystems________

6. AUTHOR(S)

Andrew H Suzuki, Capt, USAF

7 Iir TORMING ORGANIZATION ; JAME(S4 AND 1L)10'A{4 EFIG MI1NG ORGANIZATION

Air Force In~titute of Technology, WPAFB OH 45433-6583 AFIT/GEO/ENG/91D-04

N5RNIINIONGAGENCY N~AME(S) AND 14 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Capt Michael Roggemann

Phillips Lab/ARCI
Kirtland AEB, NM 87117

1 1 SuPPLEMENTAfRY NOTES

1'M.DSTRIBUTION /AVAILABhLITY STATEMENT 12fib. ITRBTION CODE

44 Approved for Public Release; Distribution Unlimited

7. 13. ABSTPACT (Maximuim 200 words)

Recurrent and feedforward artificial neural networks are developed as wavefront reconstructors. The recurrent

neural network studied is the Hopfield neural network and the feedforward neural network studied is the single
layer perceptron artificial neural network. The recurrent artificial neural network input features are the wavefront
sensor slope outputs and neighboring actuator feedback commands. The fecdforward artificial neural network input
features are just the wavefront sensor slope outputs. Both, artificial neural networks use their inputs to calculate
deformable mirror actuator commands. The effects of training are examined.

T/ td E V):S i NUMBER OF IPAb S

-I 86
Artificial Neural Network, Adaptive Oplics 16, PR~~~ T~j fi~ICE CODE

i'AItY (t AW'iiICA TION 18 SFCIJIIIIY CLASSIFIC2ATION 1) 0 %60'Wr 11 IIA1Nl b,,AJ
or rtEPOFT 01 THIS PAGE Ofr At3,tI.ACT

UNLSIIUNCLASSIFIED UNCLASSIFIED U L



GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement.
Denote public availability or limitation. Cite

Block 2. Report Date, Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Tve of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reportsnumber(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS - NTIS - Leave blank.
C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subiect Terms, Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Address(es) Self-explanatory. Block 16. Price Code Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Soonsorina/Monitorina Agency Regulations (i.e., UNCLASSIFIED). If form
Names(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10. Sponsoring/Monitoring Agency, classification on the top and bottom of the page.
Report Number. (If known)

Block 20. Limitation of Abstract. This blockBlock 11. Suoolementarv Notes. Enter must be completed to assign a limitation to the
information not included elsewhere such as: must b e ete to (nlimited) o the

Prepared in cooperation with...; Trans. of ..., To abstract. Enter either UL (unlimited) or SAR

be published in .... When a report is revised, (same as report). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited, if
supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)



AFIT/GEO/ENG/91D-04

AN INVESTIGATION OF THE APPLICATION OF

ARTIFICIAL NEURAL NETWORKS

TO ADAPTIVE OPTICS IMAOING SYSTEMS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Acs 9bs .

Requirements for the Degree of B ". ?8,i fl

Master of Science in Electrical Engineering ,

et L) Ipm JIT

Andrew H. Suzuki, B.S.E.E

Captain, USAF

December 1991

Approved fot puoik. release; datribtuton unlimited



Preface

This thesis develops a baseline for further research at AFIT into the topic of integrating

artificial neural networks into the adaptive optical imaging system environment. It is my sincere hope

that I will make the work of future AFIT Master's students a little easier.

I am deeply indebted to my faculty advisor, Capt Byron M. Welsh, for his continuing patience

and assistance throughout these troubled times. Capt Welsh's persistence and seemingly unending

knowledge served as an inspiration and guiding light in the darkness I sometimes viewed as the thesis

black hole.

I also wish to thank my thesis sponsor Capt Michael Roggemann and the my thesis committee

members, Maj. Steve Rogers, Dr Matthew Kabnsky, and Capt Dennis Ruck, for their infinite wisdom

and assistance.

Finally, the most deserved thanks goes to my wife Roni and my children Anthony, Matthew,

Melissa, and Michael for their understanding, patience, and support throughout the "AFIT

experience."

Andrew H. Suzuki



Table of Cotenn

Page

Preface ............................................................. ii

List of Figures ........................................................ vii

List of Tables ........................................................ ix

A bstract .............................................................

I. Introduction ........................................................ 1-1

1.1 M otivation ..................................................... 1-1

1.2 A pproach ..................................................... 1-2

1.3 Scope ........................................................ 1-4

1.4 Standards ..................................................... 1-7

1.5 Chapter Outlines ........... .................................... 1-8

1.6 Sum m ary ..................................................... 1-9

I. Background ........................................................ 2-1

2.1 Introduction ................................................... 2-1

2.2 Turbulence ..................................................... 2-2

2.2.1 Atmospheric Coherence Diameter .............................. 2.3

2.2.2 Image Quality ............................................. 2-4

2.23 Resolution ................................................ 2-5

2.3 Adaptive Optical Imaging Systems ................................... 2-6

2.3.1 W avefront Sensing ........................................... 2-7

2.3.2 Wavefront Reconstruction ..................................... 2-7

2.3.3 Wavefront Compensation . ..................................... 2-8

2.4 Fundamental Limitations on the Adaptive Optical Imaging System ......... 2-9

iii



2.4.1 Computational Frame Time ................................... 2-9

2.4.2 Light Level ................................................ 2-10

2.5 An Alternate Solution .......................................... 2-11

2.6 Artificial Neural Networks ........................................ 2-11

2.6.1 Recurrent and Feedforward Neural Networks ...................... 2-11

2.6.2 Artificial Neural Network Learning .............................. 2-12

2.6.3 The Hopfield Neural Network ................................. 2-14

2.6.4 Single Layer Perceptrons ...................................... 2-16

2.7 Integration of Adaptive Optics with Artificial Neural Networks ............ 2-16

2.7.1 Lockheed Programmable Analog Neural Network .................... 2-17

2.8 Sum m ary ..................................................... 2-18

I1. Theory .......................................................... 3-1

3.1 Introduction ................................................... 3-1

3.2 The Adaptive Optics System Models ................................. 3-1

3.2.1 General System Development ................................... 3-1

3.2.2 Least Squares Reconstructors ................................... 3-5

3.3 Reconstructor Model Development ................................... 3-6

3.3.1 Recurrent Reconstructor Model Development ...................... 3-6

3.3.2 Feedforward Reconstructor Model Development .................... 3-9

3.4 Reconstructor Model Mapping into Conventional Artificial Neural Network

State Space ................................................... 3-9

3.4.1 Single Layer Perceptron ...................................... 3-10

3.4.2 The Feedforward Reconstructor Model and the Single Layer Perceptron .. 3-11

3.4.3 The Hopfield Algorithm ...................................... 3-11

3.4.4 The Recurrent Reconstructor and the Hopfield Algorithm ............ 3-11

3.5 Summary ..................................................... 3-13

iv



IV . Analysis Results ................................................... 4-1

4.1 Introduction ................................................ 4-1

4.2 Experiment #1 - Establishing a Comparison Baseline ................. 4-2

4.2.1 System Parameters ........................................ 4-2

4.2.2 Baseline System Results ................................... 4-3

4.3 Experiment #2 - Artificial Neural Network Reconstructor Results ....... 4-3

4.3.1 Single Layer Perceptron Artificial Neural Network Reconstructor ..... 4-3

4.3.2 Hopfield Artificial Neural Network Reconstructor ................. 4-3

4.4 Experiment #3 - Examination of the Effects of Sparsening ............... 4-7

4.4.1 Single Layer Perceptron ................................ 4-8

4.4.2 Hopfield ............................................... 4-8

4.5 Experiment #4 - Training Results ................................ 4-10

4.5.1 Single Layer Perceptron Artificial Neural Network Reconstructor ..... 4-10

4.6 Sum m ary ................................................... 4-11

V. Conclusions and Recommendations ...................................... 5-1

5.1 Introduction ................................................ 5-1

5.2 Conclusions ................................................ 5-1

5.3 Recommendations ............................................. 5-2

5.3.1 Adaptive Optical Imaging System .............................. 5-2

5.3.2 Artificial Neural Networks ................................... 5-3

Appendix A. Hopfield Artificial Neural Network Energy Function Analysis .......... A-I

A l Introduction ................................................... A-i

A.2 Uniqueness of the Hopfield Solution ................................. A-3

Appendix B: Single Layer Perceptron Artificial Neural Network Training .......... B-1

B.1 Introduction ................................................... B-I

V



B.2 Instantaneous Backpropagation Method .............................. B-I

Appendix C: Hopfield Artificial Neural Network Training ...................... C-1

C.1 Introduction ................................................... C-I

C.2 Ensemble Training Technique ...................................... C-3

C.3 IteraP-/e Aspects of the Ensemble Training Algorithm .................... C-4

Bibliography .......................................................... BIB-i

V ita ............................................................... V IT A -I

vi



List of Figures

Figure Page

1.1 .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 1-5

1.2 ................................. 1-5

1.3....................................................................1-6

1.4....................................................................1-7

1.5....................................................................1-7

1.6....................................................................1-8

2. 1....................................................................2-2

2.2....................................................................2-5

2.3....................................................................2-6

2.4....................................................................2-7

2.5....................................................................2-8

2.6....................................................................2-12

2.7....................................................................2-13

2.8....................................................................2-15

3.1....................................................................3-9

4.1....................................................................4-2

4.2....................................................................4-4

4.3....................................................................4-4

4.4.................................................................. .5

4.5....................................................................4-5

4.6....................................................................4-6

4.7....................................................................4-6

4.8....................................................................4-9

4.9................................................................... 4-9

vii



4.10 .. . . . . . . . . . . . . . . . . . . . . . . . . . .I. . . . . 4-10

4.11 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

A ............................................................... A-2

C-1................................................................ C-2

C.2 ............................................................... C-5

viii



List of Tabkca

Table Page

.. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . 1-6

.. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . 3-10

.. . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . . 4-8

ix



AFTT/GEO/91D-04

Abstract

This thesis develops artificial neural network wavefront reconstructors for a ground-based

adaptive optical imaging system. The incoming object wavefront is reflected from a 21 actuator

continuous faceplate deformable mirror onto a 20 subaperture Hartmann-Shack wavefront sensor.

Recurrent and feedforward artificia. neural networks are developed as wavefront

reconstructors. The recurrent neural network studied is the Hopfield neural network and the

feedforward neural network studied is the single layer perceptron artificial neural network. The

recurrent artificial neural network input features are the wavefront sensor slope outputs and

neighboring actuator feedback commands. The feedforward artificial neural network input features

are just the wavefront sensor slope outputs. Both artificial neural networks use their inputs to

calculate deformable mirror actuator commands. The effects of training are examined for the single

layer perceptron neural network.

The adaptive optical system is simulated by integrating simulation software provided by the

Phillips Laboratory Kirtland AFB, NM and a computer model of the neural network controller. The

simulation code contains adaptive optical system models and an atmospheric phase screen generator.

This thesis research supports the feasibility of integration of artificial neural networks with

adaptive optical imaging systems. The simulation results show the performance of artificial neural

network reconstructors are commensurate with conventional linear estimation techniques. The

simulation also shows, that training artificial neural networks can provide performance enhancements

not currently achievable using conventional techniques.
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AN INVESTIGATION OF THE APPLICATION OF

ARTIFICIAL NEURAL NETWORKS

TO ADAPTIVE OPTICAL IMAGING SYSTEMS

. Introduction

1.1 Motivation

The traditional Air Force mission, *to fly and fight' is becoming increasingly dependent on

peripheral technologies. High resolution ground based exo-atmospheric imaging technology is crucial

to successful fulfillment of present and future Air Force mission profiles. The success of high

resolution ground based exo-atmospheric imaging hinges on the solution to one crucial problem,

negating the effects of atmospheric turbulence.

Atmospheric turbulence significantly degrades the performance of exo-atmospheric imaging

systems. Atmospheric turbulence produces image motion, distortions, and intensity fluctuations

(scintillation) (16:360). There are several methods to compensate for turbulence induced image

degradation. For ground based applications, the most common methods are post processing and

predetection. Post processing compensates for image aberrations after image retrieval. Predetection

compensates for image aberrations in real-time. This thesis addresses only predetection atmospheric

imaging, specifically the use of adaptive optics.

Predetection or adaptive optics uses real-time control to compensate for image degradations

encountered when imaging through turbulence. Real time imaging is essential to the exo-atmospheric

tracking and possibly weapons delivery aspects of the Air Force's mission profile.

The adaptive optics system performs three basic functions: wavefront sensing, reconstruction,

and compensation. Wavefront sensing measures the turbulence induced phase aberrations of the

incoming wavefront across the system aperture. Wavefront reconstruction uses the sensed phase

aberrations to calculate the deformable mirror actuator commands. Wavefront compensation receives
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the actuator commands and positions individually controlled actuators on a deformable mirror to

counteract the effects of turbulence.

The integration of the artificial neural network with the adaptive optical imaging system

occurs in the wavefront reconstruction process. This thesis research develops "artificial neural

network reconstructors." The artificial neural network reconstructors use slope sensor measurements

to calculate deformable mirror actuator commands.

The Air Force's Phillips Laboratory is at the forefront of the DOD's effort to explore adaptive

optics as a means to compensate for the effects of atmospheric degradation on exo-atmospheric

imaging systems. The Phillips Laboratory, who sponsors this thesis, is actively investigating the use

of adaptive optical systems to image exo-atmospheric objects, such as satellites.

1.2 Approach

The goal of this thesis is to demonstrate that artificial neural networks can accomplish

adaptive optical wavefront reconstruction. Artificial neural networks have many features that can

potentially benefit present and future adaptive optical imaging systems. The artificial neural network

combines the features of a highly parallel architecture and extremely fast computational speed to

provide significant advantages over conventional wavefront reconstruction techniques. The added

feature of artificial neural network training can provide accurate system output estimates under a wiae

variety of system operating environments. To accomplish the research goal, the following tasks must

be completed:

1. Determine the types of artificial neural networks to use as research baselines.

2. Develop artificial neural network wavefront compensation algorithms using conventional

adaptive optics control techniques.

3. Implement adaptive optical wavefront compensation using the artificial neural network

compensation algorithms.

4. Simulate and evaluate the system performance by comparing with conventional linear

estimation techniques.
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5. Demonstrate the potential benefits of artificial neural networks.

The first task starts with a delineation between the types or classes of artificial neural networks that

are candidate wavefront reconstructors. The two classes of neural networks researched are the

feedforward and recurrent artificial neural network. This thesis analyzes a representative artificial

neural network from each class. The baseline artificial neural networks chosen were the; Hopfield

neural network for the recurrent class and the single layer perceptron for the feedforward class.

The second task maps the adaptive optics wavefront reconstruction process into each neural

network state space. Recurrent and feedforward neural networks have unique properties which govern

their implementations as wavefront reconstructors. Each neural network is studied to determine the

best means of integration with the adaptive optical control system.

The third task develops software models of the artificial neural network wavefront

reconstructor. The artificial neural network models are integrated with a software simulation package

provided by the Phillips Laboratory, Kirtland AFB, NM. The Phillips Laboratory simulation package

contains the adaptive optical system models and control algorithms for conventional adaptive optics

compensation. Modifications are made to the simulation code to replace the conventional

reconstructor with the artificial neural network reconstructor.

For the fourth task, an unmodified version of the simulation code is the comparison baseline.

The unmodified version uses a conventional !inear. imvion technique known as the "least squares

reconstructor.' System performance comparisons are made between the results from the least squares

reconstructor and the artificial neural network reconstructor.

The final task demonstrates the potential benefits of artificial neural network compensation.

The feature of artificial neural network training is used to show how artificial neural networks can

provide performance enhancements not currently achievable using conventional reconstruction

techniques.
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1.3 Scope

This thesis is the initial step into the integration of artificial neural networks and adaptive

optical imaging at AFT. Several estimates and assumptions are used to expedite progress and

complete the research tasks in the allotted time. Most of the estimates and assumptions have their

roots based in precedents found in the literature. Some of the assumptions are imposed by the

software simulation code and others are pure engineering judgement.

This thesis assumes that the adaptive optical imaging system is a ground based system. A

separate system tracks the object and its associated reference or guide star. The object and guide star

are in close proximity to one another, therefore adaptive optic compensation for the guide star also

compensates for the object. A separate imaging system removes the overall piston and tilt of the

incoming wavefront.

The simulation code produces a random phase screen developed from a technique introduced

by Cochran (4). This phase screen simulation produces phase screens whose structure functions, when

computed over a large ensemble, corresponds to a Kolmogorov atmosphere (13:389-391). This

simulation code also contains models for each component of the adaptive optical imaging system. The

wavefront sensor model is patterned after the Hartmann-Shack sensor (HS WFS), which produces

slope outputs. The detection process produces random additive noise which corrupts the slope

outputs. The noise and signal are uncorrelated. The deformable mirror is modeled as a continuous

face sheet mirror with Gaussian actuator influence functions. This thesis neglects the effects of a time

delay between the wavefront sensing and correction. The adaptive optical system geometry used for

this thesis has 20 wavefront sensor subapertures and 21 deformable mirror actuators (Figs 1.1, 1.2).

This particular geometry is an artifact of the method used by the simulation code to determine the

actuator and subaperture locations. The operational parameters used in this thesis are shown in Table

L

The Hopfield neural network is modeled (Fig. 1.3) as a discrete time system with synchronous

updates (32). This means the updates to the Hopfield outputs and inputs are made at the same time

and time is modeled as discrete steps. The neuronal outputs of the Hopfield network correspond to
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Figure 1.1 Deformable Mirror Actuator Geometry

Figure 1.2 Hartmann Wavefront Sensor Subaperture Geometry

the individual actuator commands to the deformable miror. The input features to a neuron are the

weighted slopes from the wavefront sensor and neighboring actuator feedback commands (Fig. 1.4).

To produce an output command, the weighted inputs are summed and passed through a soft limiter

activation function.
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Table I System Parameters

Parameter Value

Wavelength (X) 500 nm

Actuator Separation (actsep) 15 cm

Mirror Diameter (D,) 75 cm

Light Level (N) 1-1000
photoevents/subap/

integration time

Atmospheric Coherence Diameter (ro) 7.5, 10, 20 cm

Ammuar Out"t (1-21)
Cl 2  C21

Figure 1.3 Hopfield Neural Network

The neuronal outputs of the single layer perceptron (Fig. 1.5) are the actuator commands to

the deformable mirror. For the single layer perceptron, the neuronal inputs are the weighted slope

sensor outputs, (Fig. 1.6). The output nonlinearity or activation function used is a sigmoid or

.squashing function.*
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Figure 1.4 Hopfield Neuron

Acuo Ocqmb (1-21)
cl2 21

Wj

Figure 1.5 Single Layer Perceptron Artificial Neural Network

1.4 Standards

Tis thesis analyzes the system performance in response to variations of both system and

hardware parameters of the adaptive optical imaging system. The system parameters are the light

level and seeing conditions. The hardware parameter is the amount of interconnections from the

wavefront sensor to the wavefront reconstructor.
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Figure 1.6 Single Layer Perceptron Neuron

As a final product, this thesis contrasts the performance between the conventional least

.squares reconstruction algorithm and the artificial neural network reconstructors. The primary figure

of merit used is the mean square residual phase error between the estimated and the actual wavefront.

1.5 Chapter Outlines

The following is a brief synopsis of the information found in each of the thesis chapters.

1.5.1 Chapter 2. Chapter 2 presents the fundamental concepts behind adaptive optical

imaging systems and artificial neural networks. These fundamental concepts are essential to

understanding the problems that plague the adaptive optical imaging system and a possible somution

using artificial neural networks. The concepts presented in this chapter serve as the basis for the

algorithms and analysis presented in chapter 3.

1.5.2 Chapter 3. This chapter uses the background knowledge provided in chapter 2 to

develop feedforward and recurrent reconstructor models. Each reconstructor model is then validated

as being either a Hopfield or a single layer perceptron artificial neural network.
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1.5.3 Chapter 4. This chapter presents the results of the analysis and simulation. The task

of analyzing and simulating the adaptive optical imaging system is an intricate process. To adequately

address each specific part, the entire simulation process was divided into specific experiments. Each

experiment and the results are discussed in detail.

1.5.4 Chapter 5. This chapter states the conclusions based upon the results provided in

Chapter 4. The chapter concludes with recommendations for areas of future study.

1.6 Sumaiy

The adaptive optics imaging system presents a very complex control system problem. A

proposed solution is the use of an artificial neural network wavefront reconstructor. This thesis

investigates the application of two different types of artificial neural networks (i.e. Hopfield and single

layer perceptron artificial neural network) to the adaptive optical imaging system. The artificial

neural network reconstructor performance and potential performance enhancements using artificial

neural network training are presented.
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II. Backgroud

21 Introduction

This chapter presents the fundamental concepts behind adaptive optical imaging systems and

artificial neural networks. These fundamental concepts are essential to understanding the problems

that plague the adaptive optical imaging system and a possible solution using artificial neural

networks. The concepts presented in thesis chapter serve as the basis for the algorithms and analysis

presented in the next chapter.

This chapter provides the background concepts needed to obtain a fundamental understanding

of the problem (atmospheric turbulence), system (adaptive optical imaging system), and proposed

solution (artificial neural networks). Prior to developing artificial neural network reconstructors, the

following research questions must be answered:

1) What is the origin of the problem ?

2) How does the adaptive optical imaging system work ?

3) How does the problem influence the system ?

4) Is there an alternate solution to the problem ?

5) How does the solution work ?

6) Has the solution been implemented ?

7) How will this research effort extend the present implementation ?

This chapter sequentially addresses these fundamental questions. Research question 1 is answered

in section 2.2. Section 2.2 provides an overview of the concepts of the most important problem facing

present and future optical imaging systems; negating the effects of atmospheric turbulence (research

question 1). Section 2.2 discusses why phase only correction is used to combat the effects of

atmospheric turbulence. Section 2.2 also introduces a useful measure of the image degradation effects

introduced by atmospheric turbulence, the atmospheric coherence diameter (r.). Section 2.3 answers

research question 2 by defining three basic functional elements (sensing, reconstruction, and

compensation) of the adaptive optical imaging system and how these functional elements are currently
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implemented. The system limitations imposed by atmospheric turbulence are presented in section 2.4

(research question 3). Research question 4 is addressed in section 2.5 by presenting a brief discussion

of how artificial neural networks represent an alternate solution to the problem. The theory behind

the solution (artificial neural networks) is presented in section 2.6 (research question 5). Research

question 6 is answered in section 2.7 by discussing the current implementations of the artificial

neural network solution. This chapter concludes by presenting the direction that this research effort

will take to address the final research question.

22 Turbulence

This section discusses the origin of the problem (research question 1) facing adaptive optical

imaging system. The origin of the problem is atmospheric turbulence. Atmospheric turbulence

Figure 2.1 Turbulent Eddy Representation of the Atmosphere

degrades the performance of optical imaging systems. The aberrations produced by the atmosphere

are caused by inhomogeneities of the refractive index of air. Differential heating of the Earths'

surface causes large scale temperature inhomogeneities. These large scale inhomogeneities are broken

up into smaller scale 'eddies" by convection and turbulent wind flow. Each turbulent eddy has its own

individual refractive index (13:388). The localized refractive indices temporally and spatially modulate

the amplitude and phase of a propagating wavefront. Figure 2.1 graphically displays the effect of the

turbulent eddies on plane wave propagation. The plane wave propagating through the atmosphere
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is sensed as an aberrated wave by the imaging system. The aberrations are due to amplitude and

phase modulations induced uy atmospheric turbulence.

The amplitude modulation effects are known as scintillation. An example of scintillation is

the twinkling of stars (34:224). The scintillation effects can be considered negligible when the

following condition is satisfied (36:2580)

LT-D (2.1)

where L is the objects distance from the exit pupil, Do is the pupil diameter, and A is the wavelength.

Although this condition is not strictly met at high altitudes, much of the literature suggests that the

amplitude modulation effects are less severe than the phase modulation effects for ground based

vertical imaging through the atmosphere (9) (11) (25) (38). Therefore, by only compensating for this

phase aberration, the object image can, in theory be reconstructed. This research effort focusses only

on the phase compensation aspect of adaptive optical systems.

2.2.1 Atmospheric Coherence Diamerc. The atmospheric coherence diameter or Fried

parameter is a useful measure of the image degradation caused by atmospheric turbulence. The

atmospheric coherence diameter is a measure of the correlation qualities of the optical wave

propagating through the atmosphere. Typical values of r, at a good mountain top observatory can

range from 5 cm to 20 cm (13:432).

The atmospheric coherence diameter is defined by (13)

r ,.185( -) (2.2)

where A is the wavelength, is the zenith angle, C,-(z) is the atmospheric structure constant, and z

is a point along the optical path.
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Subsequent sections will show how the atmospheric coherence diameter is intimately related

to the image quality and resolution of the adaptive optical imaging system. Section 2.2.2 shows the

expressions for the atmospheric optical transfer function are easier to understand and simpler in form

when put in terms of the atmospheric coherence diameter. Section 2.2.3 shows the resolution of an

adaptive optical imagina system is directly related to the ratio of the systems aperture diameter and

the atmospheric coherence diameter.

2.22 Image QuaLity. A performance measure of an imaging system operating in the presence

of the atmosphere is the average optical transfer function (OTF) (28). The average OTF is used

because the turbulence is a random process in time and space and the ensemble or average quantities

are of interest- Comparison between the system optical transfer function and the diffraction limited

transfer function gives an excellent measure of the system performance and image quality.

The Rytov solution for the propagation of an electromagnetic wave in a homogeneous,

isotropic medium with zero mean Gaussian random phase statistics defines the long exposure OTF

(13). The long exposure OTF of the medium is a function of the atmospheric phase structure

function. The expression for the phase structure function, D,, within the inertial subrange is given

by (13)

D.(r) 6.88 (r) (2.3)
r

where r is the spatial separation between two points on the object wavefront and r, is the atmospheric

coherence diameter. The long exposure OT1 of the atmosphere can be shown to be

77 (r) - exp H- D,(r)] (2.4)

The overall OTT of the optical system and the atmosphere is the product of the OTF of the optical

system and the average OTF of the atmosphere. The overall OTF and it Fourier transform or the
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point spread function, defines the image quality of the adaptive optical imaging system. Equations

2.2 and 2.3 exemplify the dependence of image quality on the atmospheric coherence diameter.

2.23 Resolution. The previous section pointed out the effect of the atmospheric coherence

diameter on the imaging qualities of the adaptive optical imaging system. This section extends the

analysis of the atmospheric coherence diameter by eamining its effects on the system's resolution (2).

The diffraction limited resolution (%.,) between two point sources is represented by the

relationship (12:130)

2. - 1.22 X.. (2.5)

where d, is the distance from the aperture to the image plane. Turbulence effects significantly reduces

the resolution from that given in equation 2.5. A useful measure of the resolution attainable is based

upon the coherence diameter to aperture diameter ratio.

11 I , ./ I

1.0

I I

re

FIgure 2.2 Normalized Resolution vs Normalized Diameter

Figure 2.2 (13:431) shows a plot of the normalized resolution of an imaging system versus the

normalized aperture diameter. I and 2. are the resolution and the maximum resolution attainable
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by the system. D, is the aperture diameter and r, is the atmospheric coherence diameter. The dashed

line represents a diffraction limited imaging system, and the solid line represents a system subjected

to atmospheric turbulence effects. As figure 2.2 shows, the resolution of systems subjected to

atmospheric turbulence effects is significantly altered. When the aperture diameter is larger than r,

the maximum resolution achievable by the imaging system is no longer a function of the aperture

diameter. Instead, the maximum resolution is limited by the ratio of the aperture diameter to the

atmospheric coherence diameter. As the aperture diameter to r, ratio increases beyond unity, larger

aperture diameters offer no significant improvement in resolution. The resolution of larger aperture

systems coincides with the resolution of a system that has an aperture diameter equal to r0.

To exemplify this phenomena, under identical operating conditions, the maximum resolution

of a 3 m telescope subjected to atmospheric turbulence is comparable a same telescope with an

aperture equal to r. (5 to 20 cm).

23 Adaptive Optical Imaging Systems

The primary function of an adaptive optics imaging system is to provide real-time imagery of

exo-atmospheric objects, such as satellites. The generic adaptive optics imaging system (Fig 2.3) must

r. ..............

-dqw Opk J= #ya

Figure 2.3 Generic Adaptive Optical Imaging Systcin
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accomplish three basic functions to negate the effects of atmospheric turbulence. The three functions

are to sense, reconstruct, and compensate for phase distortions induced by atmospheric turbulence.

This section answers research question 2 by briefly discussing the three basic functions of the adaptive

optical imaging system.

23.1 Wavefront Sensing. Assuming the overall wavefront tilt is removed, the wavefront sensor

now measures the residual phase gradients present in the incoming wavefront. A wavefront sensor

senses the deviation of the incoming wavefront from an ideal plane wave. The wavefront sensor

samples the incoming wavefront at intervals known as "subapertures" (Fig 1.2). Each subaperture

senses the localized slope deviation of the incoming wavefront. The two most common wavefront

sensors are the shearing interferometer and the Hartmann-Shack wavefront sensor (Fig 2.4). A model

AM

Figure 2.4 Hartmann-Shack Wavefront Sensor

of the Hartmann-Shack wavefront sensor is used for this thesis.

23.2 Wavefront Reconstruction. Wavefront reconstruction receives the slope sensor

information and calculates the actuator commands needed to negate the phase aberrations induced

by atmospheric turbulence. The wavefront sensing process gives slope sensor measurements that are

a linear function of the turbulence induced phase aberration. Due to this linear relationship between
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the slope sensor measurements and the phase aberrations, conventional linear estimation techniques

are used to reconstruct the object wavefront (6:1). The two most common linear estimation

techniques are termed the least squares and the minimum variance reconstructors (28:1). This thesis

uses the least squares reconstructor as the comparison baseline.

23.3 Wavefront Compensatiom The deformable mirror receives actuator commands from the

wavefront reconstructor to provide a phase conjugate of the wavefront phase aberrations. The mirror

uses individually controlled actuators to make a piecewise approximation of the phase conjugate

wavefront surface. The 2 most common types of deformable mirror architectures are the segmented

mirror and continuous face sheet mirror (Fig 2.5).

The segmented mirror has been used for atmospheric optical compensation for many years.

Segmented mirrors can compensate for piston component of the aberrated wave or piston and tilt.

In a segmented mirror, the actuator phase compensation at one segment is not affected by actuator

control of any other segment. Early integration of adaptive optical imaging and artificial neural

networks used segmented mirrors (31:19).

Figure 2.5 Deformable Mirror Geometries
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Continuous facesheet mirrors use a thin quartz or glass facesheet supported on arrays of

discrete actuators. These discrete actuators deform or put a 'dimple" in the mirror surface to provide

a conjugate phase correction. This thesis uses a continuous facesheet mirror as a baseline. In a

continuous facesheet mi-ror, any given actuator command influences the mirror surface over the entire

mirror diameter. This thesis models this effect by using Gaussian actuator influence functions. The

actuator influence functions are defined at each actuator center and any phase compensation point

is found to be a combination of all the actuator influences summed at that point.

24 Fundamental Limitations on the Adaptive Optical Imaging System

The atmosphere imposes fundamental limitations on the adaptive optical imaging system

(research question 3). These limitations can be loosely grouped as limitations on; the computational

frame time of the adaptive optical imaging system, the image quality, resolution, and the light level.

This section presents a discussion of the limitations imposed on the adaptive optical imaging system

by atmospheric turbulence.

2.4.1 Computational Frame Time. The turbulent nature of the atmosphere produces

wavefront phase aberrations which exhibit a high degree of temporal instability. This temporal

instability imposes a fundamental limitatiorF oi the. wonpatational frame time for adaptive optical

compensation. The adaptive optics system must sense and compensate for the wavefront aberrations

within the atmosphere's coherence time (r). The atmospheres coherence time is the time delay that

a wavefront and a temporally delayed version of the wavefront can undergo and still be highly

correlated (i.e. temporally stable) (13:158). The adaptive optics system must have a closed loop

control bandwidth of at least 100 Hz to guarantee temporal stability of the object wavefront. This

closed loop bandwidth results in a step response settling time of less than 10 milliseconds (7:260)

(8:224). The millisecond frame rate requirement for real-time operation coupled with the large

number of control channels required for adaptive optical imaging systems imposes severe restrictions

for current and future adaptive optics imaging systems.
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The conventional wavefront reconstruction process is a computationally intense environment.

The number of active control channels and the computational frame time limitations make the

reconstruction process difficult to implement without sophisticated and extremely fast hardware and

software. Coupling the magnitude of the control problem with the variational nature of factors

external to the adaptive optics imaging system, make the task of exo-atmospheric imaging quite

formidable.

24.2 Light LeveL The photon count per subaperture or Olight level' is another fundamental

limitation on the adaptive optical imaging system. The detectability of the wavefront phase

aberrations is directly related to the amount of light emanating from the object. At very low light

levels, shot noise effects in the wavefront sensor can make attempts to extract an image virtually

impossible. The wavefront sensor outputs are modeled as a signal plus additive noise measurement.

The additive noise or "slope measurement noise" is due to the shot noise effects of the detection

process and is assumed to be uncorrelated with the wavefront phase. The noise is modeled as a zero

mean Gaussian random process, where the standard deviation of the slope measurement noise a. is

defined by

a 0.86r 17 D 0 _ r
(2.6)

0.7/4 wr 7 D < r

where vy is a correction factor which compensates for the finite sized detectors separated by unusable

space and N. is the total subaperture photon count. The value of t7 is assumed to be 1.5. This value

corresponds to typical values found for charge coupled device technology (38:1919). Equation 2.6

points out the inverse relationship of the additive noise to the light level. As the light level increases

the variance of the slope measurement noise decreases.
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25 An Alternate Soluton

Research question 4 asks "Is there an alternate solution to the problem?' Recently, Lockheed

presented an alternate solution to alleviate some of the speed and interconnection problems

encountered with conventional analog and digital wavefront reconstructors (7:260-268) (8:222-229).

This solution integrated artificial neural networks into the wavefront reconstruction process. The data

rate of the artificial neural network reconstructor (5000 Hz) is almost an order of magnitude faster

than a conventional STAR array processor compensation method (600 Hz). Artificial neural networks

can also reduce the complex interconnection schemes encountered with larger deformable mirror and

wavefront sensor arrays. Although this integration of artificial neural networks and adaptive optics

is still in the early stages of development, the preliminary results are quite promising.

2 6 Arijficial Neural Networks

This section discusses the operational characteristics of artificial neural networks (research

question 5). The generic artificial neural network is a highly parallel, distributed processing structure

that consists of simple processing elements. Each processing element, or neuron has a single output

that may branch out to many peripheral connections. The output signal can have any functional form,

but must depend on the current values at the input of the neuron. Neural networks have many

names, such as connectionist models, distributed processing models, or neuromorphic systems (23:4).

Whatever the nomenclature, all of these models attempt to provide performance enhancements in a

calculation intense environment by using densely packed, highly parallel processing elements. Two

of the basic characteristics used to describe artificial neural networks are the type of network

(feedforward/recurrent) and the learning technique (21:11-221) (27:39-40).

261 Recuemnt and Feedforward Neural Networks. Feedforward neural networks (Fig. 2.6)

operate on the sum of weighted inputs using an activation function or nonlinearity to calculate an

output. For single layer feedforward networks (Fig. 1.5) the activation function outputs are the system

outputs. For multiple layer feedforward neural networks (Fig. 2.6) the activation function outputs
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Figure 2.6 Multilayer Feedforward Artificial Neural Network

become weighted inputs to the next layer of neurons, and so on, until the output layer produces the

system output. Outputs in this type of neural network are changed only when a new input exemplar

is presented. The weights in these type of networks are often trained to produce desired outputs. The

feedforward artificial neural network studied for this thesis is the single layer perceptron.

A recurrent neural network (Fig. 2.7) is a neural network that has feedback paths from

neuronal outputs to neuronal inputs. The output response of these networks is dynamic. The outputs

continually changing until the network converges to reach a stable value. An input is presented to

the network then an output is calculated. The outputs are then fed back into the network as inputs.

This process is repeated until a stable condition is reached. Stability can be defined as convergence

to a single output, as in the case of a Hopfield neural network. Convergence can also be defined as

a predetermined time in the future, as in the case of a recurrent backpropagation neural network.

The recurrent artificial neural network examined for this thesis are the Hopfield neural network, and

an extension of the Hopfield network that takes advantage of the learning properties of artificial

neural networks.

262 Anqcal Neural Network Leaming. Artificial neural networks can be trained to learn

relationships between patterns/exemplars. Learning is the encoding of information, a system can learn
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Figure 2.7 Recurrent Artificial Neural Network

a pattern by encoding information about that pattern. Subjecting a neural network to many patterns

allows the network to generalize about the interrelationship between the patterns. These

interrelationships are formed by statistical process inference or class relationship between the

ensemble of patterns. The ways in which artificial neural networks learn are described as being either

unsupervised, supervised, or a combination of both.

In unsupervised training the training feature data set is given to the network. The data along

with the training algorithm position the weights into clusters that reflect the distribution of the

training data (40:2-9). The unsupervised training algorithm uses the data to approximate the

probability distribution of the ensemble data set. The inference of the probability distribution is used

to classify subsequent test data.

Supervised learning presents the neural network with an ensemble of training data pairs

composed of input data features and their desired output. The figure of merit is the difference

between the neural network calculated output and the desired outpuL The interconnection weights

are then trained to minimize some function of this error. Typically, the weights are trained to reduce

the mean squared error between the calculated and desired outputs. The training process is repeated

over many training pairs to allow the network to learn the statistical relationship binding the entire
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data seL This thesis addresses a specific supervised training technique known as the backpropagation

method (17:593) (39:270-280). The backpropagation training method will be applied to the single

layer perceptron and the Hopfield artificial neural networks.

26.3 The Hopfield Neural Network The Hopfield neural network or relaxation neural

network is the network of choice for many hardware implementations. The reasons are the

conventional Hopfield neural network has fixed interconnection weights (27:78-82) and extremely fast

convergence properties. For these reasons, the Hopfield neural network is the baseline recurrent

neural network used for this thesis.

The Hopfield neural network has been applied to many classes of problems. These classes

can be loosely classified by the type of problem the neural network is attempting to solve. These two

application groups are the associative memory (1:204) and function estimation (10:805-810) (41:499-

506) (33:533-541) applications. This thesis diverges from the associative memory applications and

applies the Hopfied neural network to a classical optimization problem, adaptive optical wavefront

reconstruction. The operational concept of the Hopfield neural network begins by presentation of

an input to the network. The network continually operates on the weighted sum of inputs and

feedback outputs, until the network converges to a stable state. The Hopfield neural network can

processes the weighted sums by passing them through a nonlinear function such as a hard limiter or

sigmoid (squashing function). This thesis uses a soft limiter or ramp nonlinear function to calculate

neuronal outputs. When using Hopfield neural networks, fundamental issues must be addressed to

adequately predict and characterize the systems performance. The most important issues are to a

Hopfleld neural network designer are convergence stability and local minima (Fig 2.8).

Convergence stability posed a formidable problem to early researchers. It was very hard to

predict which networks would be stable. This problem continued until fundamental work was

accomplished by Cohen and Grossberg to characterize the convergence stability for this specific class

of recurrent neural networks. The dynamic Hopfield neural network system possesses convergence

stability if there is a Lyapunov function that describes the performance. The existence of a Lyapunov
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function proves stability, whereas the nonexistence of the Lyapunov function does not infer anything

about system stability (21:69-73). The Lyapunov function of the Hopfield neural network is often

termed the "energy" function (18:3089-3090). Examination of the gradient of the energy function with

respect to the system outputs can prove convergence stability. The energy function of the Hopfield

neural network is intimately dependent upon the properties of the feedback weight interconnection

matrix. Exhaustive analysis of the convergence issues has resulted in two requirements for the

feedback interconnection weight matrix (5:815-826). The first is there is no self feedback for the

Hopfield neurons, or the weight from the i" to the i* neuronal element is zero. The final restriction

imposed by convergence stability is that the feedback interconnection weight matrix must be symmetric

about the main diagonal, or the weight from the id to the j'h neuronal element equals the weight from

the jIb to the i neuronal element.

When an energy surface becomes complicated and has many peaks and valleys, local minimas

hug

I I
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Figure 2.8 Local Minimum

become a significant concern (22:137) (30:327). Issues of numerous local minima plagued early

researchers using Hopfield neural networks. Local and global minimas represent stable solutions in

the energy state space for this class of neural networks. When a Hopfield neural network converges,
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it settles into a minimum on the energy surface. Convergence to a local minima represents an

incorrect solution.

264 Single Layer Percepirons. The single layer perceptron artificial neural network was

originally proposed by Rosenblatt in 1959 (27:47). The single layer perceptron artificial neural

network and a single perceptron are shown in Figs. 1.5 and 1.6. The inputs to the perceptron can be

from other perceptrons or the external sources (e.g. slope sensor outputs). Each input is multiplied

by a synaptic weight wij and summed. A bias term (8,) is added and a nonlinear transformation is

applied. There are several forms for the nonlinearity, for example a hard limiter, a linear ramp, or

a sigmoid. The bias term can also be treated as another weight multiplied by a constant of one. The

single layer perceptron uses the weights to map the vector of inputs onto a vector of outputs.

The key to function estimation using perceptrons is using a learning algorithm to find the

correct set of weights. The most common perceptron learning algorithm is called "backward error

propagation," or simply "back-prop." Backprop calculates the error at the output layer and

backpropagates the error through the network correcting the weights. The correction represents a

gradient descent down the error surface toward a minimum. Perceptron learning using backprop is

an automatic way of setting the weights and thresholds. Training the perceptron to actual data allows

the inference of the probability distribution of the data. Once the probability distribution is inferred.

subsequent presentation of unseen inputs allows the perceptron to generalize and estimate an answer

based upon inferred probability distribution.

2 7 Integration of Adapvie Optcs with Anrnfcial Neural Networks

This section answers research question 6 by describing how the previous implementations of

artificial neural networks operated, the results of these implementations, and the limitations of these

implementations. The earliest forms of the adaptive optical system control were realized using

networks of operational amplifiers and resistors which achieved the desired solution during steady

2-16



state conditions (14:669). These implementations were a rudimentary form of the Hopfield artificial

neural network (31:20). Recently, Lockheed presented further applications of artificial neural

networks to the adaptive optical imaging system.

2 7.1 Lockheed Programmable Analog Neural Network. An analog neural network breadboard

consisting of 256 neurons and 2048 programmable synaptic weights has been constructed and tested

(7:260-268) (8:222-229). This analog neural network implements Hudgin's recursive algorithm for

optimal wavefront estimation using an array of noisy wavefront slope measurements. The neural

network finds the optimal control matrix to command the deformable mirror actuators. The actuators

deform the mirror surface to compensate for the phase aberrated wavefront. The current

implementations are an extension of work previously accomplished by Smithson in 1987 (31). In 1987.

Smithson began his studies into the integration of artificial neural network with adaptive optics.

Smithson noticed that the analog feedback network implementation of the adaptive optics control

algorithm developed by Hudgin was a special case of the Hopfield neural network. The

implementation of the Hudgin algorithm used fixed weights on the feedback ac.uator voltages

characteristic of the Hopfield neural network applied to continuous work functions.

Smithsons' implementation was followed by work accomplished by Fisher and others. Fisher

used Hudgin's algorithm to integrate artificial neural networks with an adaptive optics system. Fishers

contributions was a demonstration of the ability for open and closed loop control (7:260-268) (8:222-

229) of a segmented deformable mirror array.

The open loop control consisted of training the artificial neural networks using actual

actuator command signals as the training vector with no feedback between actuator commands.

Fisher's open loop control implementation is equivalent to a single-layer, feed-forward artificial neural

network. Fisher's training used a perceptron type training algorithm to determine the best weights

for the input slope sensor values. The open loop study was then extended to allow actuator command

feedback, in this case both the input and feedback weights were trained using an algorithm similar to

the backpropagation training algorithm. The closed loop control used actuator command teedback
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and adapted the system to optical component drift or settling due to thermal effects. For closed loop

control, the loop was opened at 3 second intervals and system parameters were sampled. Based upon

the sampled parameters the input and output feedbac'- artificial neural networks weights were

adjusted.

The basis for the previous applications of artificial neural networks to the adaptive optical

imaging system all relied upon the recursive algorithm developed in 1977 by Richard H. Hudgin

(19:375-378). This algorithm uses a 'large array" assumption. The algorithm also implicitly assumes

that there is no significant interaction between the mirror actuators. These assumptions result in a

convolutional form for a *perfect reconstructor' that results in a recursive algorithm. This recursive

algorithm showed that an estimate of the actual wavefront phase is a linear combination of the four

*nearest neighbor actuator* phase and phase difference values. The shortfall of this assumption is that

it does not allow for edge effects encountered at the mirror periphery. Due to the noninteraction

between deformable mirror commands, this algorithm is well suited to describe the operation of a

segmented mirror, but is deficient when attempting to explain the operation of a continuous mirror.

28 Summa,y

The current adaptive optic imaging systems may not achieve the high data processing

throughput requiremcnts necessitated by futu-c military image resolution requirements. The high

degree of parallelism of neural networks has resulted in significant increases in the throughput, and

may offer the solution to the computational frame time limitations encountered by adaptive optic

imaging systems.

To extend the previous implementations of artificial neural network reconstructors, this thesis

develops a two alternate techniques that allow full control of all the actuators on a continuous

facesheet deformable mirror (research question 7). A recursive technique is developed that is well

suited for a Hopfield artificial neural network. A feedforward technique is developed for a single

layer perceptron artificial neural network architecture. Performance of the artificial neural network

reconstructors is analyzed in response to selected parametric variations. The parameters that are
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varied are the light level and atmospheric coherence diameter. The use of artificial neural network

training is used to examine the performance enhancements achievable using artificial neural networks.
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III. 7teopy

3.1 Introduction

The previous chapter provided background knowledge of the problem (atmospheric

turbulence), the system (adaptive optical imaging system), and artificial neural networks. This chapter

uses the background knowledge to develop artificial neural network reconstructors. This chapter

outlines the approach taken to develop artificial neural network reconstructors. The basic approach

consisted of the following research steps;

(1) Define the fundamental adaptive optical system models.

(2) Develop the comparison baseline (least squares reconstructor) model.

(3) Develop the reconstructor models that are implemented using artificial neural networks.

(4) Validate the reconstructor models by mapping the models into conventional artificial

neural network state spaces.

This chapter is developed by sequentially addressing each research step. Section 3.2 satisfies research

steps 1 and 2. Section 3.2 serves three primary purposes. The first purpose is to presc-t the

fundamental adaptive optical imaging system models. The second purpose is to derive the comparison

baseline model (least squares reconstructor). The final purpose, and perhaps the most important is

to present the primary design equation (EA 3.9) used to develop the artificial neural network

reconstructors. Research step 3 is addressed in section 3.3. Section 3.3 develops the recurrent and

feedforward reconstructor models. Research step 4 is satisfied in section 3.4. Section 3.4 presents

the conventional state space models for the artificial neural networks. The models developed in

section 3.3 are then mapped into the artificial neural network state spaces.

3.2 The Adapve Optics System Models

3.21 General System Development This section satisfies research steps 1 and 2. First, the

fundamental adaptive optical imaging system models are developed. Next, the development of the

comparison baseline (least squares) reconstructor is presented. This section also presents the primary
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design equation (Eq 3.9) for the artificial neural network reconstructors.

The adaptive optical system analysis closely follows the work done by Wallner (35:1771-1776),

Welsh (38:1913-1923), and Roggemann (28:1-20). The analysis begins with the definition of the zero

mean or piston removed wavefront phase 0t), where x represents a two dimensional position vector

within the system pupil and t is time. The piston removed phase, 0(&t), is related to the phase of

the incident wave front, (,t), by

0,t) = 0(x ) - f WA(E) 0(xt) d2 x (3.1)

where WA(3) is the aperture weighting function. The aperture weighting function is assumed to satisfy

the following relationship

f4 WA(1) d2 x = 1 (3.2)

This thesis assumes a circular aperture. A circular aperture results in an aperture weighting function

of the form

WA Do
Do (.)2 T

T2) (3.3)

0 Do

2

where D, is the aperture diameter.

The piston and tilt removed phase, -y(&t), is represented by the difference between the piston

removed phase and the tilt component
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-Y(X,t) - 0Q0j - aSW) - (3.4)

where the wavefront phase tilt component, 1(t) is given by (28:6)

a(t) - 16 x WA.qt)d2x (3.5)

The analysis and simulation assumes that the piston and tilt component of the phase are removed.

A wavefront sensor is used to sense the wavefront phase -f (It). The output of the wavefront

sensor is modeled by (38:1914)

sn(t) - f W1(O [ v ) d Q)I d2 x + a(t) (3.6)

where s8(t) is the output of the n' slope sensor at time t, W,(j) is the subaperture weighting function

of the n'b slope sensor, V-7 (&t) is the spatial gradient of the piston and tilt removed pbase, d is the

unit vector in the direction of slope sensor sensitivity, and N.(t) is the slope measuremnt noise for

the nth wavefront slope sensor.

The measurement noise, ac(t) is due to shot noise effects in the wavefront sensor and is

assumed to be uncorrelated with the wavefront phase. The noise is modeled as a zero mean Gaussian

random variable. The standard deviation of the slope measurement noise, a.(t) is defined by

(38:1918-1920)

a 0.86wxo DoLr.

F -r;. (3.7)
0.74w D <r

where ql is a correction factor which accounts for the finite sized detectors and NP is the total
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subaperture photon count. The value of 97 is assumed to be 1.5. This value corresponds to typical

values found for charge coupled device technology (38:1919).

Integrating the first term in Eq 3.6 by parts, yields

S. - [,W%(O .d-Iy(y) dx + W (3.8)

For notational simplicity, the bracketed term is represented by W'(l), where the superscript s

represents the gradient of the weighting function in the direction of sensitivity of the nt slope sensor.

The reconstruction matrix MM, maps the measured slopes into a deformable mirror actuator

command. This matrix is typically found by using a least squares or minimum variance approach

(28:1)(24). This matrix is the essential element of the artificial neural network reconstructor. This

matrix will determine the interconnection weights of both realizations of the artificial neural network

reconstructors. The actuator command, cj(t) is related to the slope sensor measurements by

C (t) = M,. s (t) (3.9)

Equation 3.9 is the fundamental design equation used to develop the artificial neural network

reconstructors. Equation 3.9 determines how the measured wavefront slopes are used to produce the

deformable mirror actuator commands.

The instantaneous phase correction associated with the actuator command c,(t) is defined by

-1;(t) - c1(t) e,() (3.10)

where e(j) is the actuator influence function or actuator impulse response function to a unit actuator

command. Here and in the simulation Gaussian actuator influence functions are used. The actuator

influence at any point I in the aperture plane due to the j* actor is given by
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- (3.11)
e.(t) =e

where x is the location of the j± actuator center, and aj is the rms width of the actuator influence

function.

The sum over all the actuators of Eq 3.10 defines the estimated phase, -y'(It) of the incoming

wavefront.

(3.12)
F. L M." s.(,) e.(

3.22 Least Squares Reconstructors. The reconstruction matrix (M,.) allows the calculation

of the deformable mirror actuator commands using the measured slopes (Eq 3.9). The

implementation of the conventional and artificial neural network reconstructors hinges on the

definition of the reconstruction (Mb,) matrix. A conventional technique that defines the

reconstruction matrix M, is the least squares approach.

The least squares or closed loop reconstructor uses feedback control of the actuator positions

to compensate for the aberrated wavefront. The phase estimate, -y'(,t) is used to calculate an

estimated slope measurement using Eq 3.& The difference or error between the measured slopes

(s,(t)) and the estimated slopes is defined as s.':

S'(t) - ,,(,) - I-., [ d2X (3.13)

Since the actuator command is independent of , the slope error can be written as
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S. (t) , $ (t) - '.t C.(t)f - -W.)eW d'x (3.14)

The integral can be represented by a (J x N) matrix, Pj,, that maps the actuator command vector into

subaperture space. The difference between the measured and estimated slopes is now

S.(t) - s (t) - FL ci(t)P , (3.15)

To calculate the least squares reconstructor control matrix, the mean squared difference between the

measured and the estimated slopes is minimized with respect to the actuator command vector.

Minimizing the expansion of sQr s.' results in the least squares reconstructor control matrix

kAI - (p.1P) ylp (3.16)

Equations 3.14 through 3.16 define the terms of the least squares reconstruction matrix. The least

squares reconstruction matrix is a function of only the actuator influence function and the directional

gradient of the subaperture weighting function.

3.3 Reconstructor Model Development

This section satisfies research step 3, development of reconstructor models. The models

developed in this section are implemented as artificial neural network reconstructors. To accomplish

the development, Eq (3.9) is manipulated to forms easily implemented using recurrent and

feedforward artificial neural networks. This section begins with the development of the recurrent

reconstructor model and concludes with the feedforward reconstructor model.

3.3.1 Recumnm Reconsuctor Model Development. This section uses equation 3.9 to develop

a recurrent reconstructor model. This recurrent algorithm will then be mapped into Hopfield neural
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network state space. Only after the algorithm is mapped into Hopfield state space can the name

Hopfield neural network reconstructor be accurately applied.

The algorithm developed in this section forms the basis of the Hopfield neural network used

in this thesis research. Equation 3.9 is manipulated to a form easily implemented using an recurrent

artificial neural network. The feedback control algorithm development begins with the fundamental

equation for the command signal to the j* deformable mirror actuator (Eq 3.9).

c.(t) [(M W. :)) + ( ..())I (3.17)

where the contributions to c,(t) by the x and y directed wavefront sensor measurements are explicitly

separated into two terms. Based upon this actuator command signal vector, the difference between

the j* any k actuator commands is

c,(t) - ckQ) [ -

(3.18)

+ ( r. - ) s.(t)I

Defining

(3.19)

the difference in Eq 3.18 is rewritten as

c() - Ck(t) + [AMk.., S.(t) + A -)..  ) (3.20

Using Eq 3.20 twice, the j* actuator command can be written in terms of the k' and the k'04 actuator'
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( W - 2 M'.)(t)

+ A. g- j.. + A M _,.. . () (3.2 t)
2

( A Mj_,..+ A,,jY.,... ) S.Y ()]

Equation 3.21 is the recurrent reconstructor model. Equation 3.21 will be implemented using a

Hopfield artificial neural network. The difference in actuator commands between all the deformable

mirror actuators and their neighbors defines a set of difference equations. These difference equations

are used to establish interdependency of all deformable mirror actuator commands. The number of

neighboring actuator commands used (i.e. how many feedback interconnections), is determined by the

Hopfield neural network feedback interconnection weight matrix stability criteria (sect. 2.6.3).

The feedback interconnection matrix is defined by connecting a single actuator with only two

of its neighbors. The interconnection weight of 1/2 from the j'" to the k actuator is equal to the

interconnection weight from the k to the j' actuator. The self feedback weight for the j' actuator

is zero. Knowing that two nearest neighbor actuator feedback commands are needed, the actuator

commands are now linked by "connecting the dots' in the deformable mirror plane (Fig. 3.1). A single

continuous line defines the actuator feedback connections. By using a single continuous line, the

dependence of each actuator command upon all of the other deformable mirror actuator commands

is defined. This dependence is insured through a cascading effect of actuator command dependence.

An example of this 'cascading' effect is shown for actuator I whose command depends upon actuators

2 and 6. Actuator 6 also depends on actuator 12's command, and so on until each actuator command

is related to a weighted version of each other actuator in the array.
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3.3.2 Feedforward Recostuctor Model Development The algorithm used for the feedforward

reconstructor model is simply Eq (3.9). Subsequent mapping of this equation into the single layer

perceptron artificial neural network state space demonstrates the ease of implementation of this type

of feedforward reconstructor model. The significant advantage of using a single layer perceptron

artificial neural network over conventional techniques is the high degree of parallelism. This high

\ I

, - 7 12 "117 21

/ f

/ I o

! /

I i

Figure 3.1 Actuator Feedback Connections

degree of parallelism should provide significant speed advantages. The added feature of artificial

neural network training should enhance the performance of this technique over conventional

reconstructors.

3.4 Reconstructor Model Mapping into Conventional Artificial Neural Network State Space

To satisfy research step 4, the reconstructor models must be mapped into conventional

artificial neural network state spaces. This section answers the question, 'Are these reconstructor

models artificial neural networks ? The mapping of the reconstructor models into neural network

state spaces validates the models as being special cases of the Hopfield and single layer perceptron

artificial neural network. Each reconstructor (feedforward, recurrent) mapping is developed by first
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Table U Actuator Feedback Connections

_______ _kk'

16 12 6,11

2 1,3 13 8,18

3 2,7 14 9,15

4 5,9 15 14,19

5 4,10 16 10,11

6 1,12 17 18,21

7 3,8 18 13,17

8 7,13 19 15,20

9 4,14 20 19,21

10 5,16 21 17,20

11 12,16

presenting the conventional neural network state spaces. The reconstructor models are then mapped

into the conventional neural network state spaces. First, the feedforward model is mapped into single

layer perceptron state space. Finally, the recurrent reconstructor model is mapped into Hopfield

neural network state space.

3.4.1 Single Layer Percepon. The general equation for a single layer perceptron artificial

neural network can written as (27:52)

5- W 7 (3.22)

where 2 is a vector of activations of the perceptrons, W is the weight matrix composed of each

individual vector of perceptron weights, and T is the vector of inputs. When I represents the outputs

of all the perceptrons, the single layer perceptron artificial neural network performs a mapping of the

input vector into a set of output vectors.
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3.4.2 The Feedforward Reconstructor Model and the Single Layer Perceptron. The feedforward

reconstructor model is simply equation 3.9. Comparing equations 3.9 and 3.19 depicts a relatively

simple mapping. For linear outputs, I corresponds to the vector of actuator commands, W

corresponds to the reconstructor matrix M, and I corresponds to the slope sensor inputs S,. For

sigmoidal activation functions, there must be an 'inverse sigmoid' applied to each neuronal output.

Sigmoid activation functions are used in this thesis to allow easier training of the single layer

perceptron artificial neural network reconstructor.

3.4.3 The Hopfield Algorithm. This section defines the conventional Hopfield state space

equations. For a continuous work function, Hopfield defines his neural networks equation of state

as (18:3089:3090)

du, u.

CS. T V - - + (3.23)
'de 'R.

where C is the input capacitance to a neuron. u, is the input voltage to the i"b neuron,

T, is the interconnection conductance (i.e. weight) from i' neuron to jm neuron, V, is the output of

j'h neuron, 1 - liT, is the input resistance to the il neuron, and k. is the input current.

Upon convergence, or steady state conditions, Eq 3.23 reduces to

Ui  T. V +J (3.24)

3.4.4 The Recuren Reconstructor Model and the Hlopfleld Algorithnm This section will map

the recurrent reconstructor model into Hopfield state space. The steady state analysis (Eq 3.24) is

used to define the Hopfield artificial neural network state space. Equation 3.21 shows that any

actuaitor control signal is determined from a linear combination of two weighted neighboring actuator
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feedback signals and a weighted sum of the slope sensor outputs. Upon manipulation of Eq. 3.21 the

jib actuator command is represented by

cJ(t4.1) -~Ti cl(t) + 2 M, JO (3.25)

where the Ti is the multiplicative 1/2 term on the feedback actuator commands, the directional AMj.'s

are combined into a single &M,, and the dLrectional slopes are combined and represented by I,. The

time dependence now reflects the discrete time synchrounous update nature of the model. A given

actuator command is updated with the feedback information from the previous time. This results in

the 't + 1 and 't" dependence of the actuator commands. The last term is a constant for any actuator

until the slope sensor measurement are updated, therefore this term can be represented by I. The

To matrix is composed of weights equal to 1/2 for each neighbor of actuator j found in Table 11.

Therefore, at any time t+ 1, a general equation for the i* actuator command due to feedback from the

j* neighbors and the weighted slope sensor outputs is written as

c (t.1) -f, [F.' T cj(t) W +1 (3.26)

where fk is the nonlinearity or activation function. This thesis uses a soft limiter with a unity gain in

the linear region of operation. Here the assumption is made that the soft limiters do not saturate,

therefore the right side of Eq 3.25 is just the argument of the limiter. Comparing Eq 3.25 to Eq 3.24

shows that they are virtually identical. For a linear activation function to the ill neuron, t. input is

the same as the output, and the equations are identical except for the R. term. The R is the input

resistance for the i* neuron. This thesis assumes that all of the neurons are identical, hence R, = R,

... = R. For this case, both sides of Eq 3.24 can be multiplied by R. The only effect of the

multiplication by R is to scale the weight matrix and input vector to the Hopfleld neural network, not

affecting the convergence stability in any way. With these assumptions, the adaptive optical image

reconstruction algorithm represents a special case of the Hopfleld neural network.
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3.5 Summary

This chapter has gone through the fundamental theory used in the developmeat of this

research effort. The reconstructor models conform to the Hopfield and the single layer perceptron

artificial neural network models. Since the models conform to the conventional artificial neural

network representations, the term 'artificWl neural network reconstructor" is now applicable.
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IV Analysis Results

4.1 Introduction

This chapter presents the results of the analysis and simulation. The task of analyzing and

simulating the adaptive optical imaging system is an intricate process. To adequately address each

specific part, the entire simulation process was divided into specific experiments. The resulting

experiments are defined below.

(1) Establish system comparison baseline (least squares reconstructor) analysis

results.

(2) Integrate, analyze, and test system performance using artificial neural network

reconstructors. Compare performance of adaptive optical imaging system

with artificial neural network reconstructors to baseline system.

(3) Examine the effects on adaptive optical imaging system performance by using

artificial neural network reconstructors with sparsened slope measurement

weights.

(4) Implement training algorithms and examine effects on overall system

performance.

Section 4.2 discusses experiment 1. Section 4.2 presents the parameters used and the results obtained

using the least squares reconstructor. Experiment 2 is discussed in section 4.3. Section 4.3 validates

the performance of the artificial neural network reconstructors. The performance validation is

obtained by comparing the artificial neural network reconstructor performance to the baseline

established in experiment 1. Section 4.4 addresses experiment 3. Section 4.4 examines the effects of

slope measurement weight sparsening on the artificial neural network reconstructors performance.

Sparsening is accomplished by 'zeroing out" two and four slope measurement weights to each neuron.

The final experiment is examined in section 4.5. Section 4.5 examines the impact of neural network

training on system performance.
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4.2 Experiment #1. Establishing a Comparion Baseline

The analysis and simulation began with the establishment of the comparison baseline. The

comparison baseline system uses the least squares reconstructor linear estimation technique. The

comparison baseline results are generated from an unmodified version of the simulation code provided

by the Phillips Laboratory, Kirtland AFB NM.

4.21 System Parametez The adaptive optical system parameters used for the least squares

and artificial neural network reconstructors are shown in Table L The variations in light level were

chosen to encompass a wide range of operation. The range chosen is consistent with the light level

variations examined by Welsh (38). The changes in atmospheric coherence diameter were based upon

the many factors. The range of coherence diameter variations coincides with the range presented by

Goodman (13). The actual values for the coherence diameters were chosen to examine the effects of

partial coherence and small aperture diameter to r, ratios.

? .. o - 0.1 nm

its$" ... to- 0.2m

(=d2) ,

2 .-...

Ugk L" do&)

Figure 4.1 Baseiot Adaptive Optical System Results - Least Squares Reconstructor
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4.22 Baseline System Results. The results of the analysis of the baseline adaptive optical

system (least squares reconstructor) is shown in Figure 4.1. The baseline or least squares

reconstructor uses eq 3.9 to calculate the deformable mirror actuator commands. The response of the

linear estimator (Fig 4.1) is consistent with the predicted system sensitivity. The establishment of this

system baseline can now be contrasted to the performance obtained using artificial neural network

reconstructors. The results for this comparison are presented in subsequent sections.

4.3 Fqpeiment #2 -Artifial Neural Network Reconstructor Results

This section presents the analysis results for both artificial neural network reconstructors.

The single layer perceptron results are presented first, followed by the analysis results for the Hopfield

artificial neural network reconstructor.

4.3.1 Single Layer Perceptron Artificial Neural Network Reconstructor. The results of section

3.4.2 showed that the single layer perceptron artificial neural network reconstructor mapped into the

exact same form as the least squares reconstructor. Therefore, the results shown in Figure 3.1 also

represent the results obtained using a single layer perceptron artificial neural network reconstructor.

4.3.2 Hopfleld Artificial Neural Network Reconstructor. The recurrent artificial neujal

network reconstructor developed in section 3.4.4 was integrated into the adaptive optical system

simulation code. The Hopfield neural network is represented by a discrete time, synchronously

updated system. The discrete time nature implies that the time intervals used to perform calculations

and updates were discrete. The feedback values were synchronously updated to each Hopfield neuron.

The Hopfield artificial neural network reconstructor was subjected to the exact same parametric

variations as the baseline least squares reconstructor.

The results for the Hopfield neural network are grouped according to the atmospheric

coherence diameter used. The first case used an atmospheric coherence diameter of 7.5 cm (Case 1).

The general form of the reconstructor followed the baseline reconstructors form. The Hopfield
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Figure 4.3 Experiment 2 - Case 1 Results, Effects of Bias Compensation

artificial neural network reconstructor resulted in a bias offset to each deformable mirror actuator

command. The bias offset represents a piston or constant phase error to the reconstructed phase.

The presence of a piston error to an adaptive optical imaging system is of no consequence. The effect

of removing the piston error is shown in Figure 4.3. Figure 4.3 shows the difference between the least

squares reconstructor and the Hopfield neural network reconstructor with and without the piston

error. A constant piston error was removed from each actuator after the Hopfleld neural network
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Figure 4.S Experiment 2 - Case 2 Results, Effects of Bias Compensation

converged. Fig 4.3 shows that the average difference between the Hopield artificial neural network

reconstructor and the least squares reconstructor when the bias is removed is quite small. Therefore.

the Hopfleld artificial neural network reconstructor with bias removal obtains performance

commensurate with the least squares and the single layer perceptron reconstructor. Figs. 4.4 through

4.7 show similar results for different atmospheric coherence diameters. Case 2 coincides with an r,,

of 10 cm and Case 3 coincides with an r,, of 20 cm.
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Figure 4.7 Experiment 2 - Case 3 Results, Effects of Bias Compensation

Althought a constant piston error is insignificant in an adaptive optical imaging system, the

origin of the error must be analyzed. The origin of the piston error was studied by examining all of

the actuator values upon network convergence. This analysis found that each actuator command was

offset from the least squares reconstructor actuator command by a constant value. The origin of the

bias offset can have two possible explanations. First, the energy function of the Hopfield artificial

neural network reconstructor is examined in Appendix A. 'Me results of analysis show that the size
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neural network reconstructor is examined in Appendix A. The results of analysis show that the size

of the steps taken toward a energy minimum becomes increasingly smaller as the minimum is

approached. This effect results in a small finite error between the actual actuator command and the

actuator command the network converges to. Subsequent sections (Sect. 4.3.2) show that a change

in system inputs to a Hopfield neural network may result in large changes in the system output. The

effect of the convergence properties coupled with the recurrent nature may result in deviations in the

system output from desired outputs. The second cause may be the lack of a constant bias

compensation term to each Hopfield neuron. The effects of a constant bias compensation term have

been explored in response to the presence of multiple minimas (30). This technique of minima

compensation is known as "simulated annealing.'. The technique of simulated annealing has been

shown to produce a single global minimum. Simulated annealing is implemented in the Hopfield

artificial neural network by introducing a bias current to each Hopfield neuron. A similar technique

could be used to reduce the bias in the networks examined for this thesis.

4.4 Epeimew #3 - Examination of the Effects of Sparsening

This section examines the effects of reducing the number of slope measurements available to

each artificial neural network neuron or 'sparsening." Each neuron must now calculate an actuator

command using less information. The intent of sparsening is to reduce the number of

interconnections required. This reduction in interconnections should equate to an overall reduction

is system complexity and computational frame time.

The method used to determine which slope inputs to neglect was made by examining the

weights on the slope measurements to the Hopfield artificial neural network. This method neglected

specific slope sensor measurements by zeroing out the least significant weights to each neuron. Table

III shows which slope sensor subaperture measurements were neglected. Table III shows which 2

(So(2)) and 4 (S.(4)) slope sensor subaperture measurements that were neglected for each actuator.

For example, for actuator 1, the least significant weights were those connecting slope measurements

4 and 8 to the 1st neuron. The four least significant weights were the weights connecting the 2, 3, 4,
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Tabe M Sparsened Slope Measurement Data

Actuator # S. (2) S. (4) Actuator # S. (2) S. (4)

1 4,18 2,3,4,18 12 18,19 5,4,19,20

2 4,18 4,12,16,18 13 15,18 8,12,15,18

3 12,18 4,12,16,18 14 2,7 1,2,6,7

4 1,3 1,3,4,13 15 2,6 1,2,5,6

5 4,18 2,3,4,18 16 15,19 15,16,18,19

6 3,18 3,4,8,18 17 5,15 5,10,15,18

7 12,18 8,12,16,18 18 15,18 5,10,15,18

8 12,18 8,12,15,18 19 5,11 1,5,6,11

9 2,11 2,6,7,11 20 5,7 5,6,7,11

10 10,18 2,5,10,18 21 5,15 5,10,11,15

11 18,19 15,18,19,20

and 18th slope measurements to the 1st neuron. The same slope measurements that were neglected

for the Hopfield artificial neural network reconstructor were also neglected for the single layer

perceptron reconstructor.

4.4.1 Si"re I.ye' Percepoo. The f¢-cvs of sparsening is examined for the single layer

perceptron. The weights were set to zero for the specific sparsening case. The zero weights

corresponds to zeroing out the appropriate M,, matrix coefficients. The results of the sparsening of

the single layer perceptron network is shown in Figure 4.8. Figure 4.8 shows that the performance

characteristics of the sparsened single layer perceptron artificial neural network are degraded.

4.4.2 HopfIeld The results for the sparsened Hopfleld artificial neural network is shown in

Figure 4.9. For the Hopfield artificial neural network, the sparsening did not correspond to zero out

the M. coeffilents. The determination of the input weights is attributed to the lack of one to one

correspondence between input weights to the Hopfield artificial neural networks and the N1 matrix
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Figure 4.9 Experiment 3 - Sparsened Hopfleld artificial neural network results

coefficients. The sparsening of the Hoplield artificial neural network reconstructor zeroes out the

AM~, coefficients (Eq 3.21). T7hese zeroed out coefficients are combinations of the differences in the

M.matrix and a shifted version of the M, matrix The actual effects of zeroing out the M',

coefficients (single layer perceptron sparsening) and producing the A%. matrix was examined. For

example, in some cases zeroing out 4 M,, coefficients and then producing the AN%, matrix resulted

in the zeroing out of only 2 AM,. coefficients.
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4.5 Egehmnt #4. Training Results

The inputweights to the single layer perceptron and the Hopfield artificial neural network

reconstructors were trained. The goal of training was to determine if artificial neural network training

could compensate for the lack of information presented by sparsening. The algorithms used to train

the artificial neural network reconstructors are found in Appendices B and C.

4.5.1 Single Layer Perceptron Artificial Neural Network Reconsructor. The training results of

the single layer perceptron artificial neural network reconstructor are depicted in Figure 4.10. The
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Figure 4.10 Experiment 4 - Single Layer Perceptron Training Results

single layer perceptron was trained using a training and test set composed of 400 training pairs per

epoch. The light level was 100 photocounts/subaperture/integration time, and the atmospheric

coherence diameter was 10 cm. Figure 4.10 shows that the performance of the sparsened artificial

neural network reconstructor was improved by training. At light level above approximately 7

photocounts/subaperture/integration time, the trained artificial neural network provided better

compensation for wavefront aberrations. The lack of performance of the trained artificial neural

network reconstructor at low light levels is explained by the ability of the net to learn the probability
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distribution of the noise. At high light levels, the noise variance is smaller than the noise variance

at low light levels. Hence, training at high light levels would teach the network the noise variance

properties using small variances. You could not expect the network to provide accurate estimates

when the noise variance gets markedly larger than from what the network learned.

4.6 Summay

This chapter presented the analysis and simulation results. Section 4.3 showed that the

artificial neural network reconstructors could achieve performance commensurae with conventional

linear estimation techniques. In an effort to reduce the number of hardware interconnections, the

effects of sparsening were examined in section 4.4. The result of section 4.4 was that the sparsened

recurrent artificial neural network reconstructor experienced a larger performance degradation. The

goal of section 4.5 was to find out if artificial neural network training principles could be applied to

compensate for input sparsening. Section 4.5 showed that a reduction in hardware interconnections

could be coupled with backpropagation training principles. The result was performance enhancements

not currently achievable using conventional linear estimation techniques.
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V. Conclusions and Recommendations

5.1. Introduction

This thesis researched the implementation of baseline artificial neural network reconstructors

with an adaptive optical imaging system. This research examined the performance of the single layer

perceptron and the Hopfield artificial neural network reconsuuctors. The reconstructors were

integrated with an adaptive optical imaging system that was composed of a wavefront sensor with 20

slope sensor subapertures and a 21 individually controlled actuator deformable mirror.

The entire process was written in Fortran 77 and simulated on a VAX VMS system. The

main simulation code was provided by the Phillips Laboratory, Kirtland AFB NM. The software

written for this thesis consisted of the code to calculate the Hopfield input weights, the artificial

neural network reconstructor subroutines, and the artificial neural network training algorithms.

This chapter presents a brief summary of what was accomplished by this research effort. This

summary of accomplishments is followed by a summary of recommendations for future research into

this area.

5.2. Conclusions

1. The artificial neural network reconstructor is a feasible alternative to conventional linear

estimation techniques. The artificial neural network is an extremely fast, densely packed,

highly parallel distributed processing structure composed of many simple processing elements.

These features alone merit consideration of the artificial neural network as an alternative to

conventional linear estimators. This research also demonstrated that there is virtually no

performance difference between artificial neural networks and the conventional least squares

reconstructor.

2. The added feature of artificial neural network training gives the artificial neural network

the ability to provide performance enhancements not currently achievable using conventional
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linear estimators. This performance enhancement was demonstrated by the trained single

layer perceptron using only 16 of 20 slope sensor inputs.

3. The recurrent artificial neural network can provide performance commensurate with

conventional linear estimators and single layer perceptrons. The feedback nature of recurrent

neural networks did not result in the system robustness originally envisioned. Instead, the

recurrent nature may result in inherent instabilities and a reduction in the systems ability to

compensate for the lack of essential information.

5.3 Recommendations

This research represented an initial effort at AFIT to integrate two diverse

technologies; adaptive optics and artificial neural networks. A general recommendation is

that the entire simulation should be moved to a workstation environment. Throughout this

effort, the mainframe computer reliability was quite unpredictable. The only pitfall is that

a workstation environment would require rewrite of the IMSI subroutines used by the

simulation. A residual effect of this groundbreaking effort was many simplifications were

made to complete the research in the allotted time. Therefore, the recommendations for

future research are many and grouped into two basic areas; adaptive optical imaging systems,

and artificial neural networks.

5.3.1 Adaptive Optical Imaging System This research was based upon a nominal

amount of wavefront slope sensors and deformable mirror actuators. A logical extension is

to increase the amount of slope sensors and deformable mirror actuators. By increasing the

both the amount of slope sensor subapertures and deformable mirror actuators, the effects

of reducing the number of slope sensor inputs or "sparsening" can be further researched.

Coupled with the increase in the slope sensor subapertures and deformable mirror actuators

should be an increase in the mirror diameter.
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Further research should examine different techniques to reduce the amount of slope

information used by each neuron. This research used the weights of each slope sensor

measurement to determine the importance of each slope m,-asurement to a particular neuron.

Spatial location should be explored as means of reducing the amount of slope measurements

input to each neuron.

The mirror surface may not be flat when actuator vo!hages are set to zero. Additional

mirror data is needed to model these effects. A bias may be added to selected deformable

mirror actuator commands to compensate for this effect. The effect of distinct actuator

influence functions can be modeled.

The temporal aspects of the system also need to be researched. An instantaneous

correction was assumed for this thesis. The effects of finite and random time delays between

actuator command and movement need to be addressed. The temporal aspects of the

wavefront sensing process need to be analyzed. The Hartmann sensor can undergo slow

transients when detecting time invariant phase distortions. These slow transients are

attributed to the sensor "warming up,. These effects can ')e modeled as a random bias for

each slope channel.

A hardware system composed of a continuous facesheet deformable mirror and a

Hartmann wavefront sensor is available for use to provide verification of the software

simulation results. Operational testing and evaluation of this system should provide

additional data that can be integrated with the software simulation.

5.3.2 Anrfiial Neural Networks. The baseline artificial neural networks studied in

represented two representative networks for two classes; recurrent and feedforward.

Additional research into additional types of artificial neural networks is highly recommended.

Many fundamental questions still remain unanswered. For instance, historically there has

been two types of linear reconstructors; minimum variance and least squares. Can an

artificial neural network somehow be trained to provide performance commensurate with the
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minimum variance but have the robustness of the least squares reconstructor ? Can a neural

network compen'sate for idiosyncrasies of the system components through training. Research

into multilayer perceptron type networks is essentiaL Recently, a recurrent backpropagation

network was demonstrated at AFIT with great success. The possibility of using this type of

network to perform wavefront reconstruction is encouraged. This thesis outlined the

fundamental implementation of the artificial neural network into the adaptive optical imaging

system. The fundamental goal of future research should be geared to find the best candidate

neural networks for implementation into the adaptive optical imaging system environment.

The artificial neural networks used in this thesis effort did not use a bias term into

each neuronal element. This bias term should be added to each neuron of both the recurrent

and the Hopfield artificial neural networks. The effects of this bias on the weight correlation

to known reconstructor matrix coefficients should be examined. For classifiers, the bias

allows partitioning of the feature space by offsetting the hyperplane locations. For function

estimation, the effect of this bias term must be analyzed in depth. The effect of the bias on

training should also be addressed. Training the network without bias is analogous to "tieing

one hand behind the networks back. The bias adds an additional degree of freedom to the

training algorithms. This added degree of freedom and its effect on training time and

learning rates should be analyzed. Analysis into the use of backpropagation with momentum

and conjugate gradient training techniques is encouraged.

Software simulation is meant to be a predictor of actual haidware implementations.

A hardware implementation is now possible and encouraged here at AFIT. Neural network

integrated circuits are currently available, coupled with the deformable mirror and Hartmann

wavefront sensor available at AFIT, increased research into the spatial and temporal aspects

is essential. Concurrence of hardware analysis and testing with software simulation is

encouraged.
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Appendir A: Hopfield Artificial Neural Network Energy Function Analysis

A.) Introduction

The convergence of this type of neural network is essential to accurate wavefront phase

estimates. The energy function for a Hopfield neural network describes the network convergence

properties. Close examination of the gradient of the energy function defines the convergence

properties for this type of neural network. The energy function of the Hopfield neural network with

a continuous work function has unique properties. The energy function of the Hopfield neural

network with a continuous, linear activation function is described by Eq A.1 (18:3089-3090). Using

the same notation as section 3.4.3, for a unity gain, the inverse I/O relationship reduces to simply V,

which gives us

E- T. VTV V

(A.1)

+5 +

Examination of the gradient of the energy function with respect to the input voltage V,, yields

dE 1 2V+ (A.2)!-d~ - ., 7"# V. + ' A2

Analyzing this definition of the change in the energy with respect to a change in the neuronal input

yields interesting results. For identical neurons with a constant input resistance R, the right hand side

of the gradient equation results in the three cases shown in Eq (A.3). The first case results in a

ne.itive gradient. The second case occurs at convergence for the energy surface or a minimum. The

third case results in a positive gradient. For each case, the magnitude of the gradient is equivalent

to the Jifference between the left hand side and the right hand side of each case.
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(3) 2 V + I. >_ 1 T.

The form of the energy surface is found by applying the second derivative test to the energy gradient.

The second derivative of the energy function yields 2/R,. Since the resistance is always positive, 2

energy function is concave upwards. The critical values for the second derivative test are found by

solving for the energy gradient of zero , Case 2. The second derivative test reveals that these critical

values represent minimums on the energy surface. Figure 3.1 is a graphical representation of the

BAfrgy
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Figure A.I Energy Surface Representation

energy surface outlined by the previous analysis.

The energy function provides a gradient descent down the energy surface toward a minimum.

The magnitude of the gradient determines the size of the steps taken toward a minimum. Therefore,

as the difference in the weighted output versus the weighted inputs decreases (Eq A.3 cases 1,3), the

movement down the energy surface decreases accordingly. The Hopfield network step size is also
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decreasing until a minima is reached. This step size reduction results in a slowing down of the

movement down the energy surface as the minima is approached.

A useful contrast is made by examining the associative memory application of the Hopfield

neural network. The step size of an associative memory is based upon the relationship of the energy

gradient to a threshold value. The hard limiter used in the associative memory Hopfield neural

network results in a discrete step size. The step size of the associative memory Hopfield neural

network has values of 0,1,2. The discrete step size results in extremely fast convergence toward a

minimum. The Hopfield network studied for this thesis has continuous outputs, this results in a

larger variation in the step sizes taken toward an energy minimum. The variations in step sizes

coupled with the decrease in step sizes as the minimum is approached has resulted in an increase in

the number of iterations taken to converge. The problem with this type of minimum seeking algorithm

is the presence of local minimums.

A.2 Uniqueness of Hopfield Network Solution. This type of neural network reconstructor usefulness

is based upon the convergence to an accurate phase estimate. Zhao and Mendel (41:499-506) proven

that a neural network with a specific form will converge to a unique solution defined by the initial

conditions. A unique output is an output with a single or global minimum. What this infers, is that

under specific conditions this class of neural nei-,u k will calculate a unique answer tr unique inputs.

For the adaptive optical imaging system, this equates to a unique phase estimate for a unique set of

system conditions.

The form of the network examined by Zhao and Mendel corresponds to a Hopfield neural

network, with specific assumptions. The assumptions employed by Zhao and Mendel apply to the

neural network studied for this thesis and are as follows

(1) Feedback interconnection matrix is symmetric

(2) No self feedback for individual neurons

(3) Initial condition for the neuronal outputs is zero

(4) Neuron outputs are bounded within a well defined region
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(5) Linear gain within the output boundary region

(6) All neurons have the same I/0 characteristics.

The lack of local minimums alleviates the concern that the neural network reconstructor may

provides erroneous actuator commands.
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Appendix B: Single Layer Percepro Anaial Neural Networ* Training

B.1 Introduction

This appendix examines the training technique used for the single layer perceptron artificial

neural network reconstructor. The artificial neural network training used is the backward error

propagation technique or simply 'backprop." This thesis used the instantaneous method of

backpropagation training. The instantaneous method minimizes the error associated with a single

training exemplar. Weight updates are made for each training exemplar presented to the artificial

neural network.

B.2 Instananeous Bacpropagaton Method

The instantaneous backprop method begins by defining the total error for the j= neuron, C,

as
a s (d , - c -) (B . )

where d, is the desired output and c, is the calculated output for the j= neuron. The total energy (E,)

is defined as the sum of the individual mean squared errors or

Ed c,)' (B.2)

The weight updates are implemented using the first-order gradient steepest descent (27:103.) The

weight update equation for the input interconnection weights (w,) is defined by

w W + A

(B.3)
aE

W
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The new weight, w, , is written in terms of the old weight, w,', the energy, and a learning rate, 7. The

single layer perceptron network is depicted in figure 1.5. The task that remains is the calculation of

the weight change, &w1j. Using equation B.2, the change in weight becomes

A w -- q(d-c) . (B.4)

The calculated output of the single layer perceptron, cl is define by

Ci.- f( W9 +, 0)

where fb is the activation function or nonlinearity, t. is the ie input feature to the jWO neuron, and 9,

is the bias term. For this thesis the activation function used is the sigmoid or *squashing" function.

When the argument of the activation is represented by a(w.), the calculated output using a sigmoidal

activation function is now

1
C. (B.6S1 + e' wjId*:

The partial derivative in equation B.4 is now

a - c. (I C) (B.7)

Using equations B.7 and B.3, the equation for the weight updates becomes

-i aWi +17 (- C) ci( -C)It. (B.8)

To implement this algorithm, the following steps were used;
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(1) Initialize weights and thresholds to small random numbers.

(2) Statistically normalize the input features

(3) Present training vector and desired output

(4) Calculate the actual output using B.5

(5) Update weight using B.8, where 0 q :s I
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Appendix C: Hopfield Artificial Neural Network Training

CI Introduction

This thesis will examine if the conventional Hopfield neural network can be trained to provide

performance enhancements under varying system and hardware conditions. The algorithm developed

as part of this research effort begins with the conventional backpropagation algorithm.

The conventional Hopfield artificial neural network utilizes the feature of fixed

interconnection weights to provide extremely fast convergence to a minimum on the energy surface.

The recurrent backpropagation neural network is a special case of the Hopfield neural network. The

main distinctions between the Hopfield artificial neural network and the recurrent backpropagation

neural network are that the recurrent backpropagation neural network uses a conventional

backpropagation training algorithm to adapt both feedback and feed forward (input) weights. The

recurrent backpropagation neural network is not designed to iterate until convergence like a Hopfield

neural network, but instead is developed as a predictor of future neuron output states. Due to this

future state predictor application, the recurrent backpropagation neural network also assumes that

there is some temporal relationship between input training exemplars. This thesis will develop a

neural network that diverges from the conventional Hopfield and recurrent backpropagation neural

networks. This hybrid network will have ftxe'- feedck interconnection weights and will train the

input weights. There are numerous reasons for this methodology. First, the feedback interconnection

weight matrix is well defined. Altering of the feedback interconnection weight matrix may in fact

jeopardize the stability criterion fundamental to this type of recurrent neural network. Another

reason is that due to the sheer magnitude of the problem, the reduced weight training set will equate

to a reduction in overall neural network training time. The general system to which the training

algorithm is to be applied is shown in Fig (C. 1).

There are fundamentally two ways to implement the backpropagation training algorithm, the

batch and instantaneous methods. The batch backpropagation training algorithm calculates the

ensemble training exemplar error, using the sum of the instantaneous errors (e k(t)) over the training
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FIgure C.1 Generic Recurrent Neural Network Architecture

set as the measure to minimize. The superscript p denotes an instantaneous value, and the subscript

k denotes the k" neuronal element. The t, is the time when the network settles or converges to an

answer. For this thesis effort, convergence stability is defined as 100 successive iterations where the

new output is less than 0.1% different than the previous output. The batch backpropagation method

defines the energy function for p training exemplars as

1C1

The instantaneous error method seeks to minimize the error associated with a single training

exemplar. In this case the energy function is defined as the sum of the squared error function.

, . (4(t))' (C.2)
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In both cases, the weight update algorithm uses a gradient descent down the error surface to converge

toward a minimum.

C.2 Ensemble Training Technique

For the purposes of this thesis, the recurrent backpropagation learning algorithm will be

employed, with a slight twist. The weight updates will not occur at every Hopfield iteration, but will

be done after the network converges to a solution for a given input training exemplar. This is done

because, changing the weights during Hopfield iterations, interrupts the recursion process and may

result in nonconvergence of the neural network. This differs from the conventional recurrent

backpropagation network training algorithm, which trains feedback and input weights after each

iteration. A recurrent backpropagation network adopts this type of training because what is important

is the temporal relationship between iterations, rather than the output upon convergence.

The Hopfield neural network is concerned with ihe output value at the time of convergence.

For this application the neural net must be allowed to converge to a solution, whether right or wrong.

The difference between this solution and the desired solution defines the instantaneous error. The

instantaneous error for that exemplar is made up of c) ibutions of error for each Hopfield iteration.

The energy function analysis must then be propa2 ;ck through each iteration and the average

weight update will be used to determine the new \, . The weight update for each exemplar, will

be made prior to presentation of another training exemplar. This backpropagation of weight updates

is represented by a total weight update equal to the mean of the weight updates that would have been

done for each iteration. This thesis assumes that the neural network operational characteristics can

be modeled by a discrete time, synchronously updated system. If the process begins at time t, and

ends at time t--t,=t,+Q, the change in weights per training exemplar is defined by

A () -= '. q A (t +q) (C.3)
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At this point, it is important to remember that the weight update occurs after the network has

converged (t=t), and not at each iteration. This type of weight update scheme is represented by

=- 1 + & W4 (C.4)

For each Hopfield iteration, this system does not update the weights, but must keep track what the

weight updates would have been. Each iteration calculates the present change in weights by using

information from previous weight updates. This can be termed a "short term system memory", since

knowledge of all training iterations is needed to calculate a weight update per training exemplar.

By examining the process in a sequential time sense, when a new exemplar is presented, the

weight update for the past training session represents the point of origin for the weights for the new

training exemplar. Each training exemplar defines a new energy function in energy/weight space. The

gradient descent of the new energy function begins at the location of the last weights. Therefore, the

calculation of the new weight update for the present training exemplar is a gradient descent to a

minimum in reference to the last minimum. This sequential process of updating the weights for many

exemplars can now be termed the 'systems long term memory", since the sequential referencing of the

present to the past weight update takes into account the effects of the weight updates for all the past

training exemplars. A large ensemble of training exemplars will be presented to the neural network.

The presentation of a large set of exemplars is attempting to build a global energy surface for the

random process. By utilizing the long term memory of the system, it is hoped that generalization

about the adaptive optics system statistics (global energy function) will occur. This generalization

should result in the formation of an optimal set of weights for the wavefronts random process that

correspond to the location of the global energy minimum in weight space. To determine the ensemble

training algorithm, the iterative qualities of that ensemble training algorithm must be defined.

C.21 Iterative Aspects of the Ensemble Training Algorithn To analyze the time dependent

aspects of the Hopfield neural network we must first define the temporal transition characteristics of
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the Hopfield neural network. To accomplish this, an analogous network to Fig (C.1) is shown in Fig

(C.2).

N a cqw %(t) a .cmmad so m lay u by T a

• I x  •

1

to to +1 to. to * Q

Figure C.2 Discrete Time Representation of the Hopfield Artificial Neural Network

Where the subscript Q represents the time at which convergence occurs. The development of the

instantaneous backpropagation learning begins with the definition of the weight update equation at

any time t, for the system defined in Fig (C.2).

w4(t+l) , w4(t) + A w4(t )  (C.5)

Using this notation, at a time t, wj is defined as the wcight from the id input feature to the jlh neuron.

Where w,(t) represents the new weight, w,(t-l) is the old weight, and the change in weights is denoted

by Aw,(t). The weight update at time t is defined as
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A wV - aE' (C.6)awq(t)

The negative of the gradient points in the direction of greatest decrease or descent on the energy

surface. Thus the gradient vector provides direction along the surface of the energy function which

searches for a minimum. The factor q7 is the gain or the learning rate of the training algorithm.

Applying the chain rule to the gradient of the energy function with respect to the activation results

in

aE' - EP ac,(t) (C.7)
a w.(t) ca(t) awq(t)

For the adaptive optical imaging system implemented using a Hopfield neural network, the actuator

command k neuron is defined as

c (t) f=-, Tk c, (t-1) + w(t) ' (C.8)

This simply states that the output of the k' neurnat a-ny time * is described by a nonhlcarity whosc

argument is the sum of two terms. The first term is a linear combination of the weighted actuator

outputs one time step earlier. The weights are defined by the feedback control matrix. For stabi'ity

purposes, the main diagonal of the feedback interconnection matrix is set to zero and off diagonal

terms are symmetric, i.e. T, = Tb,. The second term is the weighted sum of the m input features,

this is the set of weights that are to be trained. Ex,.mining the partial derivative of the output of the

kth neuron with respect t,; the input weights results in

The detivative looks at the change in the activation of the actuator command at time t with respect

to the weights at time t. Therefore the first term is independent of the change in weights at time t,
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8Ck(t) - 8 fh[E,. T4 C(t-)
a w 4 (t) a w 4i(t)(C 

9

and equals zero. Examination of the second term results in a derivative that exists only when m=i,

and k=j. The change in the activation of the actuator command with respect to the weights at time

t can now be represented by

a ck (t)
aw-) = 6Ji (C.10)

Referring back to the definition of the instantaneous energy (Eq C.2), yields

a EP a EP (C.1)
a wq(t) 8 ck(t) ~

Now we must define the change in the energy of the network with respect to the actuator co, 

at time t. The at any time (t+1), energy function can be described as being a function of the

individual actuator commands at the same time.

EP = EP[c,(t+l).c,(t+l) ,.... c(t+l)] (C.12)

We kno%, from Eqn 3.22, the definition of the il actuator command at time (t+ 1) is a function of he

actuator commands one time step earlier, therefore the actuator command at time (t+l) can be

defined as

Ck(t l) - Ck(C,(t))
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Observe,

= -' a P [c(c,(t). .c k (c,(t))] (C.14)
ac (0) ack(r)

Applying the chain rule to Eq (C.12) results in

aEP,  aEP 8c,(t+) (C.15)

The last partial derivative results in the feedback weight for the ki' neuron. Eqn 3.50 can now be

written as

a8c k a' T, (C.16)
Oct(t) cc (t+1)

The change in weights for each iteration is now defined using Eqs (C.6, C.11, C.16) by

W (t) iA a£E Tj ,.1 (C.17)
9 A- 1 a ,(t+1) I' li"

If we look at the output when the neural network converges, the error function is described by

L"(t) = di - C ([,) (C.18)

The gradient of the energy function with respect to the input interconnection weights can be related

to the instantaneous error by
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a . a 1 . (d, - c, (C.19)
a Ck(t) aCk(t.) 2

Since the desired outputs remain fixed during convergence, the change in the desired output with

respect to the weights is zero. The derivative is only defined when k-h, and therefore

aE" ' C() - dk (C.20)
a ckt k(Q .

Now to the change in weights per iteration, we must begin after the network has converged and

propagates backwards to t,

To summarize this procedure, the steps to train this type of recurrent network are as follows:

(1) Initialize weights, for this case the weights are initialized to the least square estimator

&M,. weight values to reduce training time.

(2) Present an input training exemplar and let network converge

(3) Using the number of iterations and Eqs C.19 and C.17, propagate backwards calculating

the change in weights per iteration.

(4) Using Eqs C.5 and C.3, update weights.

(5) Present another training exemplar and proceed to Step 3
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